Cisco

webex

Best Practices for

Integrations using Cisco
WebEx APIs

(XML API and URL API)

l|||l|||l
Cisco

Copyright

© 1997-2014 Cisco and/or its affiliates. All rights reserved. WEBEX, CISCO, Cisco WebEx, the CISCO logo, and the Cisco WebEx
logo are trademarks or registered trademarks of Cisco and/or its affiliated entities in the United States and other countries.
Third-party trademarks are the property of their respective owners.

U.S. Government End User Purchasers. The Documentation and related Services qualify as "commercial items," as that term is
defined at Federal Acquisition Regulation ("FAR") (48 C.F.R.) 2.101. Consistent with FAR 12.212 and DoD FAR Supp.
227.7202-1 through 227.7202-4, and notwithstanding any other FAR or other contractual clause to the contrary in any
agreement into which the Agreement may be incorporated, Customer may provide to Government end user or, if the
Agreement is direct, Government end user will acquire, the Services and Documentation with only those rights set forth in the
Agreement. Use of either the Services or Documentation or both constitutes agreement by the Government that the Services
and Documentation are commercial items and constitutes acceptance of the rights and restrictions herein.

Last updated: 092214

www.webex.com

Table of Contents

WebEx Public API BeSt PractiCes.......comsissnsas 1
Developer Onboarding (GDP, Partner ID) ... 3
) a0 0 L) o U D T 3
Request URL CONFIGUIATION w..cuuiuieereeeeereeeesseesessesssessesssessessesssessessssssessssssssssssssesssssssssssssssssssssssssssssssssanes 3
L% 4B Lo o o ¢ o PO TS O TP 4
WA XL0 L4 1= 0 Lo L= L0) o 5
L% 4B Lo o o ¢ o PO TS O TP 5
Caching, BackURL Support (Cross Domain), and Global Redirect...........ccorsrsnsnscsnsesannns 6
L% 4B Lo o o ¢ o PO TS O TP 6
B 00 0 7
Provisioning, Roles, and ACCOUNLS ... ssssssssssssssssssssssssssses 9

What not to

6 o T 10

CEP (Common ENtry POINL) ...ccciiisissnsnssnsssas 11

YT 1) L /2 13
Time Zones and COUNEIIES. ... 15
Telephony/Audio SUPPOTT ... sn s snsas 16
MEEUING TYPES...uiiiiiiriiiirnsimssmsnismsssss s a s a e AR AR AR SRR R R AR AR R A AR AR R A AR AR R R AR AR R R AR RS 17
Large Volume of Response (Pagination) and Search Result LImitingccccuocunssinsesans 19
Development Sites and TeStING ... ———————— 23
Error Handling, Troubleshooting, and GSB Status..........cs 25

ii

WebEx Public API Best
Practices

WebEx public APIs are open and available for use and testing with the WebEx
SaaS Cloud. In order to guide you through easy and secure integration with
WebEx, this document captures tips and best practices on the usage of WebEx
APlIs.

Developer Onboarding (GDP,
Partner ID)

Work with your CSM or PSM to join the Gold Developer Program (GDP). This will
provide you with a development site and a partner ID for your production site.

Work with your account manager (CSM or PSM) to set up a meeting with the API
support team. They will assist you during the integration and also provide you
with a questionnaire to better understand your integration.

Partner ID

The partner ID (PID) is a configurable value assigned to your organization at the
time the API is enabled on your site. This parameter is required by the AT=SU
command as an identifier that the APl commence has the authority to create user
accounts without signing in as a site administrator. This is a very valuable piece
of information that should be protected just as you would any crucial password.
Because this is security-sensitive information, it should be routed through the
WebEx Client Services Manager, who will make sure the contact receiving the
information is approved.

Request URL Configuration

Developers should not hard-code the URL of the XML API to which they post
requests. Integrations should be configurable to run on different WebEx
customer sites, which have different domains. In addition, the service directory
of the XML API URL is subject to change. For example, WebEx deploys new
versions of the XML API to a “/preview” directory before replacing the current
version at the regular directory to allow testing of integrations before migrating
to the production site.

Developer Onboarding (GDP, Partner ID)

Thus, developers should use two configurable parameters to build the XML API
URL to post their request:

https://[site_domain]/[xml_directory]

where site_domain = WebEx customer site (i.e., mwapi.webex.com), and
xml_directory = Regular preview directory (i.e.
WBXService/preview/XMLService or WBXService/XMLService).

What not to do

= Don’t use site id; use site name in API calls wherever possible. Site IDs
sometimes change.

= [Ifusing site name, then don’t hard code it. Make it configurable.
= [Ifusing site id, then don’t hard code it. Make it configurable.

= Ifusing partner id, then don’t hard code it. Make it configurable.

Authentication

WebEx APIs support the following authentication flows:

Username/password-based authentication flows for non-SSO sites
One-time login ticket for SSO/non-SSO sites (can be used with URL API)
Site admin username/password flow for both SSO and non-SSO

Session Ticket obtained through SAML Response for SSO sites

Partner SAML Response-based Session Ticket (on behalf of multiple sites) for
both SSO and non-SSO sites.

Use the appropriate flow for the site setup. If you are a third-party integrator
whose application needs to work with multiple WebEx sites, leverage a Partner
SAML flow.

What not to do

Don’t hard code username/password.
Don’t use the same password for each user.
If storing user passwords, hash them.

SSO sites should not use username/password flows.

Caching, BackURL Support
(Cross Domain), and Global
Redirect

= Ifyou are using BU parameter in URL API, make sure the back URL is in the
approved/trusted list of domains in Site Administration.

= Data from “getSite” can be cached as it doesn’t change often.

= You can cache usernames and meeting keys. Meeting keys work fine unless
the meeting/series is deleted.

= Ifyou are using a Global Redirect feature, which is sometimes used in
conjunction with API integration and branding, we recommend keeping it
simple (like exceptions for some key pages only). As the product evolves, new
URLs and pages will be introduced and there cannot be a guarantee of
backward compatibility.

Note: Global Redirect is NOT an API feature.

What not to do

= Don’t cache meeting links. Always get it from an API like
getJoinURLMeeting/getHostURLMeeting

= Don’t cache recording links. Always get it from IstRecording or other APIs.

Throttling

We recommend no more than a thousand API calls in a minute.

Provisioning, Roles, and
Accounts

= Use host accounts for scheduling meetings, meeting lists, join, host, etc.

= Use site administrator accounts or partner accounts to provision or pull
history data.

= Provisioning on Non-SSO Sites:

Before provisioning a user through API, check if the user already exists or
allow the user to provide a WebEx ID. Do not provision a user unless
required.

When provisioning users using APIs, use the latest password policy for
secure passwords. Allow users to select their own passwords.

Per security policies, it is highly recommended that passwords be
changed periodically. Ensure your integration has a workflow, which will
allow users to change their passwords either using APIs or the WebEx

pages.

Ensure a workflow exists for de-activating users.

= Provisioning on SSO sites:

Unless using Just In Time, SSO sites could need APIs for provisioning.
Check to ensure username is unique.
Do not set a password for the user. It will be ignored.

If you are a third-party integrator, use Partner SAML flows for user-
provisioning API calls.

Ensure a workflow exists for de-activating users.

Provisioning, Roles, and Accounts

= Non-authenticated operations are supported for a limited set of APIs and
should be used to Join Meeting or Attendee Registration.

= XML API: IstSummarySession, getAPIVersion, getjoinURLMeeting
= URL API: m.php?AT=]M

Tip:

When de-provisioning/de-activating the user, rename the user’'s WebEx
ID <johndoe> to <johndoe_date_time> and email address
<johndoe@example.com> to <johndoe_date_time@example.com.old>.
This will allow re-use of the old email address for provisioning a new
user.

What not to do

10

= Do not use site admin accounts for scheduling, editing, retrieving meeting
lists etc., on behalf of host.

CEP (Common Entry Point)

Common Entry Points are not really API but a URL to land on a WebEx page. We
are discouraging use of these CEP links, as we will shortly be deprecating them.

11

Security

= When setting/editing meeting passwords or user passwords, obtain the
password rules from WebEx using the getSite API.

= Always use POST for all API calls.

= Always use HTTPS for all API calls.

= For SSO sites, we only support SAML 2.0-based tickets in API calls.

= [P Referrer

Creating a host account using the URL API command (AT=SU) uses a
server-to-server connection. To make sure the data passing over the wire
is secure (in addition to using HTTPS/POST), you can request the use of
IP Referrer on your WebEx site. The IP Referrer option checks the IP
address from which any AT=SU command originates, and validates the
source. If an AT=SU command does not come from a valid IP address, the
request will be denied.

To use the IP Referrer option, you will need to provide WebEx with the IP
address of your server, or the IP of the last exit point before the Internet
if you use a firewall or proxy configuration. You have the option to
provide one IP address or a range of IP addresses. Forward this
information and requests for enabling the IP Referrer option on your site
to your WebEx Client Services Manager.

= Domain Referrer

Although the login command (AT=LI) is not a server-to-server command,
it does have an additional security option in the Domain Referrer. The
Domain Referrer makes sure that no one, even a host with a valid login
and password, can use the API to access your site unless they are on your
domain. In other words, when you implement the Domain Referrer
option, you will deny anyone outside your network the ability to sign in

13

Security

14

using the WebEx API. If they know their WebEx ID (WID) and password
(PW), they will be able to visit the WebEx site to sign in through the
normal web interface, but will not be able to use the API. Requests for site
changes should be directed to the WebEx Client Services Manager.

Note: The URL API is supported for use in browser-based applications.
WebEx uses a number of methods in its process of operation that do not
work well when the browser is not allowed to “do the work.” If Java or
similar technologies are used, the WebEx XML API is a better choice
depending on the goal of the implementation.

Time Zones and Countries

WebEx users can be simultaneously scattered across the globe. Therefore, all
scheduled times need to specify a time zone. In the XML API, all WebEx time
elements require an accompanying <timeZonelD> code. Many XML functions
take a <timeZonelD> code and never parse the <timeZone> strings. The
strings returned in the <timeZone> elements (such as “GMT-08:00, Pacific
(San Jose)); list the city and hours relative to GMT during Standard Time.
These <timeZone> string values are constant. Thus, during Daylight Savings
Time, the <timeZone> string hours relative to GMT appear incorrect. If you
plan to use these strings in your user interfaces, you must handle this
conversion logic on your own. A more robust approach is to generate user
interface strings from the <timeZonelD>.

Some XML API use <country code> and <country name> for input. These
inputs are validated. As a best practice, always pass a country code so the
validation does not fail. See Appendix A of the XML API Guide to obtain the
correct country codes.

15

Telephony/Audio Support

= There are more than WebEx-only telephony options supported by the
product. Your integration should obtain telephony and VoIP information
using getSite and getUser API and identify user’s options for audio (WebEx,
TSP, Other).

= When scheduling meetings, avoid setting “None” for the <telephonySupport>
element unless the site/user is set up for that option.

16

Meeting Types

= The CreateMeeting API requires a <meetingType> value. Developers should
not hard code this value. This is especially true if the integration is meant to
run on multiple WebEx customer sites. Meeting types can vary based on the
different types of meetings that each site and user has access to. In addition,
WebEx customers with the newer Named-Host pricing model will have
different meeting types than other pricing models.

= There are two approaches to handling this issue in partner integrations:

= The <meetingType> value can be a user-selectable option. The user
GetUser APl returns all the meeting types available for a user. Integration
can use this function to dynamically present the user with a choice of
available meeting types for the site. Then, the GetMeeting Type API can be
called if required to get detailed information for each meeting type. The
meeting type selected by the user is then specified in the
meeting.CreateMeeting function.

= The <meetingType> value can be set to a configurable default value. This
approach hides the meeting type issue from the user, simplifying the
scheduling operation and eliminating the need to train users on the
meanings of each available meeting type. The configuration of the default
meeting type should be in a site administration area of the integrated
solution.

= Lastly, both the URL and XML APIs have optional elements to specify a
meeting type when creating or updating a user. Again, partner applications
should not hard-code meeting type values in these calls. If left unspecified,
the user is created with access to meeting types available on their site as
determined by their service and site administrator.

17

Large Volume of Response
(Pagination) and Search
Result Limiting

Many XML API query requests can potentially return hundreds or thousands of
response records. For performance reasons, the WebEx XML API caps the
maximum number of records that can be returned in a single query. Developer
applications should make multiple queries to “step through” the result set until
all matching records are retrieved.

All query requests have <listControl>, <startFrom>, and <maximumNum>
elements. These elements allow each query to return a fixed subset of the total
number response records. Each subsequent query can step through the next
subset until all response records are returned. Developer applications should
check the <totalRecords> response value and increase the <startFrom> value in
each subsequent query until all records are returned.

Here is Java pseudocode that makes multiple requests to eventually retrieve the
entire list of WebEx users for a site:

int segment=20; // get first record subset call
LstSummaryUser with

<listControl> <startFrom>1</startFrom>
<maximumNum>segment</maximumNum> </listControl>;

process LstsummaryUserReponse; int totalRecords = value
for <matchingRecords><total>;

// loop to get additional subsets for (int n = 1 +
segment; n < totalRecords; ++n) {

19

Large Volume of Response (Pagination) and Search Result Limiting

call LstSummaryUser with <listControl>
<startFrom>n</startFrom>
<maximumNum>segment</maximumNum> </listControl>;
process LstsummaryUserReponse; }

For more, review the XML API Guide section Global Request Elements on list
controls

20

21

Development Sites and
Testing

= As part of the GDP program, you will receive a development site.

= With every major/minor release, APl enhancements will be communicated to
all GDP contacts.

= While the API enhancements will be backward-compatible, always perform
regression testing of your integration on the development sites during
periods identified in the communication sent to you.

= Understand the limitations of development sites here.

= We strongly recommend that you do not perform schema validation in your
integration using XML API. Schemas will change. The API servers perform
validation anyway.

23

Error Handling,
Troubleshooting, and GSB
Status

* The WebEx XML API returns <result>FAILURE<result> when a request
cannot execute successfully. XML API returns an <exception ID> code along
with the exception <reason> string. When coding XML API exception
handing, developer integrations should only process the <exceptionID> codes
and NOT parse the exception reason strings. Exception reason strings are
subject to change in future releases. Developers who are currently parsing
the XML API exception <reason> strings should change their integration code
to process the <exceptionID> instead.

= Always log date/time, exception ID, reason string, GSB status, and subError.
This will be useful for troubleshooting in case there are problems with the
integration.

= For alist of exception ID codes and reasons, refer to The XML API Developer
Reference Guide, Appendix E.

25

